Kernels of Gramian operators for frames in shift-invariant subspaces
نویسندگان
چکیده
منابع مشابه
Generalized shift-invariant systems and frames for subspaces
Given a real and invertible d×d matrix C, we define for k ∈ Zd a generalized translation operator TCk acting on f ∈ L 2(Rd) by (TCkf)(x) = f(x − Ck), x ∈ R . A generalized shift-invariant system is a system of the type {TCjkφj}j∈J,k∈Zd , where {Cj}j∈J is a countable collection of real invertible d×d matrices, and {φj}j∈J ⊂ L 2(Rd). Generalized shift-invariant systems contain the classical wavel...
متن کاملp-frames and Shift Invariant Subspaces of L
We investigate the frame properties and closedness for the shift invariant space
متن کاملFrames and Stable Bases for Shift-invariant Subspaces of L 2 (ir D ) Frames and Stable Bases for Shift-invariant Subspaces of L 2 (ir D )
Let X be a countable fundamental set in a Hilbert space H, and let T be the operator T : `2(X)! H : c 7! X
متن کاملFrames of subspaces and operators
We study the relationship between operators, orthonormal basis of subspaces and frames of subspaces (also called fusion frames) for a separable Hilbert space H. We get sufficient conditions on an orthonormal basis of subspaces E = {Ei}i∈I of a Hilbert space K and a surjective T ∈ L(K,H) in order that {T (Ei)}i∈I is a frame of subspaces with respect to a computable sequence of weights. We also o...
متن کاملFrames, Modular Functions for Shift-invariant Subspaces and Fmra Wavelet Frames
We introduce the concept of the modular function for a shiftinvariant subspace that can be represented by normalized tight frame generators for the shift-invariant subspace and prove that it is independent of the selections of the frame generators for the subspace. We shall apply it to study the connections between the dimension functions of wavelet frames for any expansive integer matrix A and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2011
ISSN: 0024-3795
DOI: 10.1016/j.laa.2011.01.018